Anova Using Commutative Jordan Algebras, an Application
نویسندگان
چکیده
Binary operations on commutative Jordan algebras are used to carry out the ANOVA of a two layer model. The treatments in the first layer nests those in the second layer, that being a sub-model for each treatment in the first layer. We present an application with data retried from agricultural experiments.
منابع مشابه
$n$-Jordan homomorphisms on C-algebras
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
متن کاملCharacterization of n–Jordan homomorphisms on Banach algebras
In this paper we prove that every n-Jordan homomorphis varphi:mathcal {A} longrightarrowmathcal {B} from unital Banach algebras mathcal {A} into varphi -commutative Banach algebra mathcal {B} satisfiying the condition varphi (x^2)=0 Longrightarrow varphi (x)=0, xin mathcal {A}, is an n-homomorphism. In this paper we prove that every n-Jordan homomorphism varphi:mathcal {A} longrightarrowmathcal...
متن کاملSpectrum Preserving Linear Maps Between Banach Algebras
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
متن کاملPerturbations of Jordan higher derivations in Banach ternary algebras : An alternative fixed point approach
Using fixed pointmethods, we investigate approximately higher ternary Jordan derivations in Banach ternaty algebras via the Cauchy functional equation$$f(lambda_{1}x+lambda_{2}y+lambda_3z)=lambda_1f(x)+lambda_2f(y)+lambda_3f(z)~.$$
متن کاملLinear Model Genealogical Tree Application to an Odontology Experiment
Commutative Jordan algebras play a central part in orthogonal models. We apply the concepts of genealogical tree of an Jordan algebra associated to a linear mixed model in an experiment conducted to study optimal choosing of dentist materials. Apart from the conclusions of the experiment itself, we show how to proceed in order to take advantage of the great possibilities that Jordan algebras an...
متن کامل